(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fac(x) → help(x, 0)
help(x, c) → if(lt(c, x), x, c)
if(true, x, c) → times(s(c), help(x, s(c)))
if(false, x, c) → s(0)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
lt(s(x), s(y)) →+ lt(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)